
A Gomoku Game-Testbed for Monte-Carlo Tree
Search Algorithms

Lisa Liu1[0009−0007−8259−6408] and Kelvin Yu2

1 University of California, San Diego, La Jolla CA 92093, USA
lil043@ucsd.edu

2 Oxford, Oxfordshire, England
kelvin2yu@gmail.com

Abstract. Gomoku is a strategy game played on the Go board. Two
players, black and white, alternate placing pieces on the intersections
of the grid to form five-in-a-row. It has often been used to test tree
search algorithms, including Monte-Carlo Tree Search (MCTS). Due to
its simplicity, it is possible to introduce variations to the rules slightly
without affecting the core mechanics and strategies for the game. In this
paper, we focus on the board size (traditionally 15x15) and introduc-
ing a dynamic boundary for moves (traditionally unbounded). Both of
these qualities greatly change the size of each move’s action space. We
contribute 9 variants of Gomoku with different combinations of board
sizes and dynamic boundaries, in order to provide a set of settings rang-
ing across action space sizes. We calculated the action space sizes per
moves for each board, and implemented a new variant of MCTS that
uses ancestor-based alpha-beta bounds in the selection phase. We ran
this against the classical MCTS in order to demonstrate the effects of
the action space changes.

Keywords: Gomoku · Monte Carlo Tree Search · Action Space

1 Introduction

Gomoku, also called "Five in a Row," is a two-player strategy board game. It is
zero-sum and is a game with complete information. It’s traditionally played on a
Go board, and its objective is straightforward; form a straight line of five pieces
in a row. There are many variations on its rules, such as not allowing six pieces
in a row, or an "overline," to count as a win, or implementing various swapping
rules in order to mitigate the first player advantage. Due to its simplicity and
adaptability, Gomoku has often been used as a subject of research in the past,
dating back to the 1993, with a paper on threat space search, a type of tree
search [1]. Subsequent research on tree searches were also tested on Gomoku [2],
and it is still a subject of analysis over 20 years later [8].

In this paper, we will seek to design different variations of this game in
order to test out the effects of different board types on tree search algorithms.
In particular, we want to focus on Monte-Carlo Tree Search (MCTS), and will



2 L. Liu, K. Yu

demonstrate the usage of our testbed game with a new MCTS variant from 2024,
which is explained in the next section.

2 Ancestor-Based Alpha-Beta Bounds for Monte Carlo
Tree Search

2.1 Alpha-Beta Pruning

Fig. 1. Example to illustrate alpha-beta pruning on a minimax trees.

MCTS [5,9] is a tree search technique that uses random sampling and sta-
tistical evaluation to explore only the most promising areas of the search space,
rather than exhaustively trying every possibility. The algorithm has four phases:
1. selection, 2. expansion, 3. simulation, and 4. back-propagation. Every node
contains a current state; for Gomoku, it is the board, the placed pieces, and
which player’s turn it is. Its children nodes are states that are reachable in one
action. The selection phase chooses the child node to explore next, either picking
an untried action, or the child that returns the greatest value using the upper
confidence bound (UCB) formula. In the expansion phase, all the possible ac-
tions and board states from the selected child node are added to the tree. In the
simulation phase, moves are placed until the result, win or loss, is determined
(a "rollout"). In back-propagation, this result is recorded up the tree back to
the root node, so the root node is aware of whether this child node seems more
or less promising to explore in the future. In this paper, we are focusing on the
selection phase, and we use random rollouts (random moves until the end).

Alpha-beta pruning is an optimisation technique used in primarily for min-
imax algorithm [4]. Figure 1 shows the core concept. We start at node A and
look at its first child, node B. We then look at node D. Here, the maximising



A Gomoku Game-Testbed for Monte-Carlo Tree Search Algorithms 3

player will choose the value 6 because it is the greatest, and this gets returned
to B. To the minimising player here, choosing node D would result in a value of
6 so they are already guaranteed a value of 6 or less. Now we look at node E.
Its first child has a value of 7, so we know the max player is guaranteed a value
of 7 or more if the min player chooses node E. Because of this, the min player
would never even consider node E because they can get a better value of 6 at
node D. This means we did not have to look at the remaining child of node E
because it would not affect the decision of the min player. In this example, only
one node was pruned, but in larger trees, entire branches can be ignored which
saves a lot of computational time.

When implemented, a variable "alpha" keeps track of the minimum value
that the max player is guaranteed, and likewise "beta" represents the maximum
value that the min player is guaranteed.

2.2 Ancestor-Based Bounds

Fig. 2. Example to illustrate alpha-beta pruning on a MCTS tree. Value (V) is the
number of wins / number of visits per node, while confidence bound (CB) is the c *
sqrt(ln(parent visits) / node visits). We used c = 0.5. The ... represents the unexplored
future moves.

In Pepels and Winands’ 2024 paper [7], they describe a way to use alpha-
beta pruning with MCTS. Alpha-beta pruning is used for minimax trees because
minimax is a deterministic algorithm and each state will always have the same
value, while MCTS relies on random rollouts so depending on the amount of
rollouts so far, a state’s value might change [3]. Alpha bounds refer to the lower
bound of the values that the maximising player is guaranteed, regardless of



4 L. Liu, K. Yu

what the minimising player does. Beta bounds are the opposite, being the upper
bound of the value that the min player is guaranteed. Because of MCTS’s random
rollouts, the true alpha or beta bound might not be found. However, the ancestor
node in the tree, given enough rollouts, may hope to keep a running global alpha
and beta bound that can still be used to eliminate choices, even if it is not the
true alpha and beta value.

Figure 2 shows the effect of alpha-beta pruning on MCTS. Each node has a
value

V =
number of wins
number of visits

and a confidence bound

CB = C ×
√

ln (number of visits to parent nodes)
number of node visits

V + CB = UCB value of the node. The global alpha-beta bounds, alpha-
minus and beta-plus, are initialized to negative infinity and positive infinity
respectively, and each time, depending on whether the node is minimizing or
maximizing, either the alpha-minus or beta-plus will be updated if the previous
alpha or beta value is less than or greater than the lower or upper bound of the
value, respectively. This way, an alpha and beta bound can be maintained even
without trying all the possibilities.

In their paper [7], the Gomoku set-up was a 15x15 board with no dynamic
boundary box. It started off with an empty board, and implemented the pie rule:
the first player makes their move, and then the second player is free to swap with
the first player’s position, or make their own move. The results of the paper’s
Gomoku experiment indicated that ancestor-based alpha-beta bounds alone do
not impact the performance of MCTS significantly, and it was hypothesized
that this was due to Gomoku’s wide-to-narrow branching factor. Amazons, the
other game in the paper that showed little improvement, also shares the same
branching factor scaling traits. It was noted that with a higher iteration budget,
the improvement is more pronounced, potentially indicating that with a smaller
iteration budget and a larger initial action space, the ancestor-based alpha-beta
may not have been activated enough to have an impact [7].

To test out this hypothesis, we decided to test out ancestor-based alpha-
beta bounds MCTS on various board set-ups. Changing the initial board size
affects the initial action space size. If the theory about the alpha-beta bounds
not activating is true, then with the same iteration budget, the bot should do
better on smaller board sizes and worse on larger board sizes. Introducing a
dynamic boundary box to the game flips the branch factor scaling, from wide-
to-narrow to narrow-to-wide. The boundary box increases in size as time goes
on, and although it is possible to make moves without increasing the boundary
box size, each expansion increases the action space size significantly, until there is
no more space on the board to increase the boundary box. If the wide-to-narrow
branching factor caused the ineffectiveness in the original experiment, then we
should be able to see more effective results with bounding boxes.



A Gomoku Game-Testbed for Monte-Carlo Tree Search Algorithms 5

We implemented a bot using this method, which will hereafter be referred to
as alpha-beta MCTS.

3 Gomoku Settings

3.1 Board Set-Ups

For board size, we tested the following sizes: 11x11, 15x15, 19x19. 19x19 is the
traditional board size, shared with the game of Go. 15x15 is the most commonly
used board size today, as well as the size used in the ancestor-based alpha-beta
bounds paper [7]. 11x11 is a board size we chose in order to provide an even
smaller board for comparison.

Fig. 3. Dynamic boundary expansion, 11x11 with radius 1.

We test dynamic boundary boxes with radius 1, 2, and infinity. Radius 1
means that the boundary is always 1 grid away from the all the current pieces
on the board, unless the boundary is already on the edge of the board. Figure
3 illustrates how this boundary expands dynamically with more pieces placed.
Radius 2 means that the boundary is always 2 grids away from the existing
pieces on the board. Infinity means that there is no boundary box; this is the
usual Gomoku version, where pieces can be placed anywhere on the board from
the start.

In total, we have 9 board set-ups: every combination of the 3 board size
settings (11x11, 15x15, 19x19) and 3 dynamic boundary settings (radius 1, 2,
infinity).



6 L. Liu, K. Yu

Because we wanted to design the boards to be as simple as possible in order
to focus on the results of changing the branching factor and the size of the action
space as the game progresses, many of these boards would necessitate a change in
the usual strategies used to play. For example, many of the board configurations
that are displayed in a 1993 paper analyzing human experts and threat space
search require pieces to be played in the corners and edges early on [1], which
is not possible with dynamic bounding boxes of a small radius. A smaller 11x11
board may also make it harder to execute some of the strategies by reducing the
amount of space that can be inserted between pieces. More research would have
to be done on seeing how human players have to adapt to the changes in these
rules.

3.2 Action Space Size Calculations

In order to simplify the game, we removed the pie rule and instead ensured
fairness when testing both the alpha-beta MCTS and regular MCTS against
each other by running an equal number of simulations where each bot goes
first as black. For simplicity and to ensure greater variability of games with a
limited training budget, we also initialized the board with black having a piece
in the center and white having a piece placed randomly within the boundary
of the black piece. The first piece in the center was to ensure consistency for
the dynamic boundary boxes. Starting with a piece in the corner, for example,
would greatly change the size of the bounding box, as two of the box’s sides are
frozen from the start and unable to expand. By ensuring the boxes are centered
at the beginning, we set the game up to allow the boundary boxes to grow as
evenly as possible throughout the game.

Fig. 4. Action space progression of all 3 boundary radii, for a 19x19 board. Green is
the upper bound. Blue is the lower bound. The shaded area covers all the possible
action spaces at that move.

The leftmost graph in Figure 4 shows the action space sizes changing across
moves for a 19x19 board with a boundary of radius infinity, or no boundary.
In the 11x11 board for example, 2 of the 121 grid intersections are filled, so at



A Gomoku Game-Testbed for Monte-Carlo Tree Search Algorithms 7

move 1 (black), 119 actions are available. By move 2 (white), only 118 actions
are available, and so on. The graph displays the upper bound for the action
space sizes, not accounting for wins/losses before the whole board is filled. For
the 15x15 and 19x19 boards, the only difference is that the starting number of
actions is 223 and 359, respectively.

The center graph in Figure 4 shows the action space sizes changing across
moves for a 19x19 board with a boundary of radius 1. The upper bound was
calculated through adding a piece in the corner of the box, ensuring maximum
expansion per move, until the boundary covers the entire board, after which it
shrinks along with the infinity radius graph. The lower bound was calculated
taking the minimum at each step of multiple combinations of picking where
to expand (side vs corner) and then always filling in the box completely before
expanding again. All the possible action space size progressions are contained be-
tween these two bounds. The upper bound represents a narrow-to-wide branch-
ing factor before becoming wide-to-narrow like the unbounded Gomoku, while
the lower bound represents an overall consistent branching factor, albeit with
an action space size much smaller than the unbounded Gomoku. However, most
games (games within the bounds) generally follow a narrow-to-wide branching
factor until the board is fully expanded.

The rightmost graph in Figure 4 shows the action space sizes for a 19x19
board with a boundary of radius 2. It is very similar to the graph for radius 1,
but the entire board is covered in fewer moves, so it hits the radius infinity line
sooner. The games of this type can also have a narrow-to-wide branching factor,
although the action space sizes will likely be larger than that of radius 1 at most
steps.

These graphs were generated for a 19x19 board, but the 11x11 and 15x15
boards follow nearly identical trends, only with the maximum spaces on the
board being 121 and 225 respectively, rather than 361.

4 Results

This section presents the results of 9 experiments on game boards of three dif-
ferent sizes.

4.1 Selection Phase

In the selection phase of MCTS, a node is picked for rollout. This node must
be a terminal node (leaf node). Starting from the root node, the next node to
traverse to is selected either for expansion (expanding the tree with all child
nodes for the selected nodes, since it is a new node with no prior visits), with
the regular UCT formula for selecting the best child (upper confidence bound
applied to trees [6]), or the modified UCT formula that uses alpha-beta bounds
to select the best child. We used "AB" to represent the total number of times
the alpha-beta UCT was used, with "Final AB" being the subset where the final
leaf node that got a rollout was chosen with alpha-beta UCT. "Reg" represented



8 L. Liu, K. Yu

the times regular UCT was used, with "Final Reg" being the subset where the
final child was chosen with regular UCT. "Expansions" represents the number of
times the node chosen had no prior visits (neither UCT formula could be used).

In every selection iteration, both bots got a rollout budget of 5000. This
means that for each move, expansions + final AB + final reg = 5000.

Fig. 5. Activations (separated by type) per move, 11x11 with radius 1.

Graphs generally follow the same trend for their radius type. Figure 5 shows
that on an 11x11 board with radius 1, alpha-beta UCT does activate a noticeable
amount, although only a very small, but non-zero, number of final selected nodes
are chosen with alpha-beta UCT. However, as time passes, a lot of nodes are
finally selected by regular UCT, rather than expansions, meaning that enough
explorations have been done for the best child formulas to start activating. When
MCTS goes first, a lot fewer moves are made by the AB MCTS, indicating
it is either losing or winning faster. 15x15 and 19x19 radius 1’s graphs also
follow a similar trend. Radius 1 follows a narrow-to-wide branching factor that
is low initially compared to the unbounded Gomoku games, and these results
show that these configurations do allow for the initialization and usage of the
alpha-beta bounds, even though it is not used a lot. Figure 6 shows the trend
for dynamic boundaries of radius 2. The trend is similar to that of radius 1,
but there are visibly less UCT activations of any kind throughout the selection
phase as opposed to nodes selected for expansions. Unlike in Figure 5, where the
number of final nodes selected for expansions dropped significantly throughout
the game, with radius 2 there was a constant need to pick nodes for expansion
throughout. This is likely due to the action space becoming too large after a few
moves, creating a large influx of unexplored nodes that need to be expanded.

The upper bound of the 15x15 radius 2 action space size progression, assum-
ing first two pieces are placed, goes as follows:

– (move 0 black, 23 spaces)
– (move 1 white, 46 spaces)



A Gomoku Game-Testbed for Monte-Carlo Tree Search Algorithms 9

Fig. 6. Activations (separated by type) per move, 15x15 board radius 2.

– (move 2 black, 77 spaces)
– (move 3 white, 116 spaces)
– (move 4 black, 163 spaces)
– (move 5 white, 218 spaces)
– (move 6 black, 217 spaces)
– ...

The sudden jump from 163 spaces to 218 spaces on the 3rd black move coincides
with the sudden drop of regular UCT activation around moves 2-3 for AB MCTS,
indicating that UCT activation in the selection process does correlate with with
the action space size. However, as soon as the action space stabilized, a small
portion of final selections started to be made with regular UCT, as opposed
to being entirely expansions. The ending spike in final regular UCT selections
could be an outlier, since only 1-2 games out of 100 reached those last two games.
Those games could be due to having a particularly favorable branching factor.

In Figure 7, the general trend for radius infinity is shown. Although both
the radius 2 graphs and radius infinity graphs select expansions for almost all of
their rollouts, regular UCT was used a lot less in the first few moves for radius
infinity; in fact, regular UCT selection was consistent throughout the game. This
is likely because the action space was at its largest throughout, unlike in radius
2, where the first few moves could work with a limited action space.

4.2 Win Rates

Table 1 shows the win rates from running alpha-beta MCTS and MCTS against
each other 200 times per board, with 100 games where alpha-beta MCTS goes
first and 100 games where regular MCTS goes first.

Alpha-beta MCTS showed a significant improvement compared to MCTS
on the board with the smallest board with the tightest boundary, 11x11 radius
1, and did not show any improvement on the largest board with the largest



10 L. Liu, K. Yu

Fig. 7. Activations (separated by type) per move, 19x19 radius infinity.

Configuration alpha-beta MCTS First MCTS First
11x11 Radius 1 74% 53%
11x11 Radius 2 70% 56%
11x11 Radius ∞ 67% 60%
15x15 Radius 1 57% 55%
15x15 Radius 2 68% 68%
15x15 Radius ∞ 52% 44%
19x19 Radius 1 66% 48%
19x19 Radius 2 80% 60%
19x19 Radius ∞ 50% 50%

Table 1. Comparison of alpha-beta MCTS and MCTS win rates as black across all
board configurations. 100 games were run per board for each bot. Bold numbers are at
least 20% higher.

boundary, 19x19 radius infinity. However, while lower radii and smaller board
sizes seem to indicate more improvement generally, and the win rates do not
always differ significantly. For example, 15x15 radius 1 only had a 2% win rate
difference.

5 Conclusion

The alpha-beta MCTS algorithm we tested in this paper did show different
results from the paper where the method was first described, which only used the
15x15 radius infinity board. 11x11 radius 1 in particular showed a significant win
rate different (21%) with our rollout budget of 5000, showing that the branching
factor of action space sizes can impact the results greatly even with a limited
budget. Our experiments also give a concrete example of how the action space
sizes can directly correlate with different features of MCTS, like the types of
activations in the selection phase for alpha-beta MCTS.



A Gomoku Game-Testbed for Monte-Carlo Tree Search Algorithms 11

The results of this paper help quantify how branching factors in games may
affect the efficiency of different types of MCTS algorithms. While this is a useful
tool to quantify the improvements made to MCTS, it can also be used help
quantify the difficulty of the games in general, therefore helping game designers
adjust the game playing experiences for all game players, AI or human.

Acknowledgments. We want to thank Tom Pepels, the author of "Ancestor-Based
α − β Bounds for Monte-Carlo Tree Search," [7] who provided a lot of feedback on
our implementation of his algorithm and insights on how to measure different qualities
on its usage. We would also like to thank Dr. Sicun Gao, the professor of CSE 150B
(Introduction to Artificial Intelligence: Search and Reasoning) at UC San Diego, for
providing the original idea of a bounding box in Gomoku to limit the action space.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Disclaimer This version of the contribution has been accepted for publication, after
peer review but is not the Version of Record and does not reflect post-acceptance im-
provements, or any corrections. The Version of Record will be available after the 14th
International Conference on Videogame Sciences and Arts conference from Dec. 5-6,
2024. Use of this Accepted Version is subject to the publisher’s Accepted Manuscript
terms of use.

References

1. Allis, L., Herik, H., Huntjens, M.: Go-moku and threat-space search. Computational
Intelligence 12 (10 1994)

2. Alus, L., van den Herik, 1, H., Huntjens, M.P.: Go-moku solved by new search
techniques. Computational Intelligence 12(1), 7–23 (1996)

3. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. IEEE Transactions on Computational Intelligence and AI in games
4(1), 1–43 (2012)

4. Campbell, M.S., Marsland, T.A.: A comparison of minimax tree search algorithms.
Artificial Intelligence 20(4), 347–367 (1983)

5. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
In: International conference on computers and games. pp. 72–83. Springer (2006)

6. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: European con-
ference on machine learning. pp. 282–293. Springer (2006)

7. Pepels, T., Winands, M.H.: Ancestor-based α-β bounds for monte-carlo tree search.
In: 2024 IEEE Conference on Games (CoG). pp. 1–4. IEEE (2024)

8. Piazzo, L., Scarpiniti, M., Baccarelli, E.: Gomoku: analysis of the game and of the
player wine. arXiv preprint arXiv:2111.01016 (2021)

9. Rimmel, A., Teytaud, O., Lee, C.S., Yen, S.J., Wang, M.H., Tsai, S.R.: Current
frontiers in computer go. IEEE Transactions on Computational Intelligence and AI
in Games 2(4), 229–238 (2010)

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

	A Gomoku Game-Testbed for Monte-Carlo Tree Search Algorithms

